
Under review as a conference paper at ICLR 2025

REGENT: A RETRIEVAL-AUGMENTED GENERALIST
AGENT THAT CAN ACT IN-CONTEXT IN NEW ENVI-
RONMENTS

Kaustubh Sridhar1, Souradeep Dutta1,2, Dinesh Jayaraman1, Insup Lee1
1University of Pennsylvania, 2University of British Columbia
ksridhar@seas.upenn.edu

ABSTRACT

Do generalist agents only require large models pre-trained on massive amounts of
data to rapidly adapt to new environments? We propose a novel approach to pre-
train relatively small models and adapt them to unseen environments via in-context
learning, without any finetuning. Our key idea is that retrieval offers a powerful
bias for fast adaptation. Indeed, we demonstrate that even a simple retrieval-
based 1-nearest neighbor agent offers a surprisingly strong baseline for today’s
state-of-the-art generalist agents. From this starting point, we construct a semi-
parametric agent, REGENT, that trains a transformer-based policy on sequences
of queries and retrieved neighbors. REGENT can generalize to unseen robotics
and game-playing environments via retrieval augmentation and in-context learning,
achieving this with up to 3x fewer parameters and up to an order-of-magnitude
fewer pre-training datapoints, significantly outperforming today’s state-of-the-
art generalist agents. Website: https://kaustubhsridhar.github.io/
regent-research

1 INTRODUCTION

AI agents, both in the digital [34, 18, 33, 25, 48] and real world [5, 6, 55, 29, 43, 22], constantly face
changing environments that require rapid or even instantaneous adaptation. True generalist agents
must not only be capable of performing well on large numbers of training environments, but arguably
more importantly, they must be capable of adapting rapidly to new environments. While this goal
has been of considerable interest to the reinforcement learning research community, it has proven
elusive. The most promising results so far have all been attributed to large models [34, 18, 33, 25, 5],
pre-trained on large datasets across many environments, and even these models still struggle to
generalize to unseen environments without many new environment-specific demonstrations.

In this work, we take a different approach to the problem of constructing such generalist agents.
We start by asking: Do generalist agents only require large models and massive datasets, or could
the right biases help achieve more with less? Observing that retrieval offers a powerful bias for
fast adaptation, we first evaluate a simple 1-nearest neighbor method: “Retrieve and Play (R&P)”.
To determine the action at the current state, R&P simply retrieves the closest state from a few
demonstrations in the target environment and plays its corresponding action. Tested on a wide
range of environments, both robotics and game-playing, R&P performs on-par or better than the
state-of-the-art generalist agents. Note that these results involve no pre-training environments, and
not even a neural network policy: it is clear that larger model and pre-training dataset sizes are not
the only roadblock to developing generalist agents.

Having thus established the utility of retrieval for fast adaptation of sequential decision making agents,
we proceed to incorporate it into the design of a “Retrieval-Augmented Agent” (REGENT). REGENT
is a semi-parametric architecture: it pre-trains a transformer policy whose inputs are not only the
current state and previous reward, but also retrieved tuples of (state, previous reward, action) from
a set of demonstrations for each pre-training task, drawing inspiration from the recent successes
of retrieval augmentation in language modeling [19]. At each “query” state, REGENT is trained to
prescribe an action through aggregating the action predictions of R&P and the transformer policy. By

1

https://kaustubhsridhar.github.io/regent-research
https://kaustubhsridhar.github.io/regent-research

Under review as a conference paper at ICLR 2025

Figure 1: Problem setting in JAT/Gato environments.

exploiting retrieval-augmentation as well as in-context learning, REGENT permits near-instantaneous
deployment in entirely unseen environments and tasks with only a few demonstrations. REGENT is
only one of two models developed so far that can adapt to new environments via in-context learning:
the other model is the multi-trajectory transformer (MTT) [33].

We train and evaluate REGENT on two problem settings in this paper, shown in Figures 1 and 2. The
first setting is based on the environments used in Gato [34] (and its open source reproduction JAT
[18]) and the second setting is based on the ProcGen environments used in MTT [33].

In both settings, REGENT demonstrates significant generalization to unseen environments without
any finetuning. In the JAT/Gato setting, REGENT outperforms JAT/Gato even when the baseline
is finetuned on demonstrations from the unseen environments. In the ProcGen setting, REGENT
significantly surpasses MTT. Moreover, in both settings, REGENT trains a smaller model with 1.4x to
3x fewer parameters and with an order-of-magnitude fewer pre-training datapoints. Finally, while
REGENT’s design choices are aimed at generalization, its gains are not limited to unseen environments:
it even performs better than baselines when deployed within the pre-training environments.

2 RELATED WORK

Recent work in the reinforcement learning community has been aimed at building foundation models
and multi-task generalist agents [34, 18, 5, 25, 6, 55, 29, 43, 22, 9, 21, 3, 16, 49, 35, 36, 50, 53].

Many existing generalist agents struggle to adapt to new environments. Gato [34], a popular
generalist agent trained on a variety of gameplay and robotic environments, struggles to achieve
transfer to an unseen Atari game even after fine-tuning, irrespective of the pretraining data. The
authors attribute this difficulty to the "pronounced differences in the visuals, controls, and strategy"
among Atari games. They also attribute Gato’s lack of in-context adaptation to the limited context
length of the transformer not allowing for adequate data to be added in the context. Our method
sidesteps this issue by retrieving only limited but relevant parts of demonstration trajectories to include
in the context. JAT [18], an open-source version of Gato, faces similar problems. We compare with
and significantly outperform JAT/Gato using fewer parameters and an order-of-magnitude
fewer pre-training datapoints. While REGENT is a 138.6M parameter model, JAT uses 192.7M
parameters. The closed-source Gato, with similar performance as the open-source JAT, reports
using 1.2B parameters. JAT is also pre-trained on up to 5-10x the amount of data used by our method
and yet cannot generalize to unseen environments. Even after finetuning on a few demonstrations
from an unseen environment, JAT fails to meaningfully improve.

Many recent generalist agents cannot leverage in-context learning. In-context learning capabil-
ities enable easier and faster adaptation compared to finetuning. Robocat [5], which builds on the
Gato model, undergoes many cycles of fine-tuning, data collection, and pre-training from scratch

2

Under review as a conference paper at ICLR 2025

Figure 2: Problem setting in ProcGen environments adapted from [33].

to adapt to new manipulation tasks. The multi-game decision transformer [25], an agent trained on
over 50 million Atari gameplay transitions, requires another 1 million transitions for fine-tuning on a
held-out game which is not practical in real robot settings. We, on the other hand, show that REGENT
(and even R&P) can adapt to new Atari games with as little as 10k transitions and no finetuning on
said transitions. Finally, the RT series of robotics models [6, 55, 29], recent Vision-Language-Action
models like Octo, OpenVLA, Mobility VLA [43, 22, 9], and other generalist agents like BAKU,
RoboAgent [21, 3] do not evaluate or are demonstrated to not possess in-context learning capabilities.
REGENT on the other hand can adapt simply with in-context learning to unseen environments.

Agents that can adapt to new tasks via in-context learning, only do so within the same envi-
ronment. Algorithm Distillation [23], Decision Pretrained Transformer [24], and Prompt Decision
Transformer [47] are three in-context reinforcement learning methods proposed to generalize to
new goals and tasks within the same environment. None of these can handle changes in visual
observations, available controls, and game dynamics.

We also compare with and outperform MTT [33], the only other model that can adapt in-context
in the ProcGen setting, with improved data efficiency and a smaller model size. MTT trains a
transformer on sequences of trajectories from a particular level and environment and adapts to unseen
environments by throwing the demonstrations into its context. The ProcGen variant of REGENT use
an order-of-magnitude fewer transitions in pre-training and is about one-third the size of MTT.

Retrieval-augmented generation for training and deployment is a core part of our policy. Various
language models trained with retrieval-augmentation such as the original RAG model [26], RETRO
[4], and REALM [20] have demonstrated performance on par with vanilla language models with
significantly fewer parameters. Moreover, retrieval-augmented generation [19] with large language
models has enabled them to quickly adapt to new or up-to-date data. We hope that our work can
enable similar capabilities for decision-making agents.

3 PROBLEM FORMULATION

We aim to pre-train a generalist agent on datasets obtained from different environments, with the goal
of generalizing to new unseen environments. The agent has access to a few expert demonstrations in
these new environments. In this work, the agent achieves this through in-context learning without any
additional finetuning. We assume that the state and action spaces of unseen environments are known.

We model each environment i as a Markov Decision Process (MDP). The i-th Markov Decision
Process (MDP) Mi is a tuple (Si,Ai,Pi,Ri, γi, Ii), where Si is the set of states, Ai is the set of
actions, Pi(s

′|s, a) is the probability of transitioning from state s to s′ when taking action a, Ri(s, a)
is the reward obtained in state s upon taking action a, γi ∈ [0, 1) is the discount factor, and Ii is the
initial state distribution. We assume that the MDP’s operate over trajectories with finite length Hi, in

3

Under review as a conference paper at ICLR 2025

an episodic fashion. Given a policy πi acting on Mi, the expected cumulative reward accrued over
the duration of an episode (i.e., expected return) is given by J(πi) = Eπi

[
∑Hi

t=1 Ri(st, at)].

We denote the expert demonstration dataset corresponding to the i-th (training or un-
seen) environment consisting of tuples of (state, previous-reward, action) as Di =
{(s0, 0, a0), (s1, r0, a1), . . . , (sNi

, rNi−1, aNi
)}. Let us assume that we have access to K such

training environments for i from 1 through K, and unseen environments indexed from K +1 through
M . We assume that the datasets Di’s are generated by acting according to an expert policy π∗

i which
maximizes J(πi). The training environments (i ≤ K) have a sizeable dataset of expert demonstra-
tions, while the unseen environments have only a handful of them, i.e |Di| >> |Dj |, where j > K.

4 REGENT: A RETRIEVAL-AUGMENTED GENERALIST AGENT

Simple nearest neighbor retrieval approaches have a long history in few-shot learning [45, 2, 44, 38, 8].
These works have found that, at small training dataset sizes, while parametric models might struggle
to extract any signal without extensive architecture or hyperparameter tuning, nearest neighbor
approaches perform about as well as the data can support. Motivated by these prior results in other
domains, we first construct such an approach for an agent that can learn directly in an unseen env-
ironment with limited expert demonstrations in Section 4.1. Then, we consider how to improve this
agent through access to experience in pre-training environments, so that it can transfer some knowled-
ge to novel environments that allows it to adapt even more effectively with limited data in Section 4.2.

4.1 RETRIEVE AND PLAY (R&P)

This is arguably one of the simplest decision agents that leverages the retrieval toolset for adaptation.
Given a state st from an environment j, let us assume that it is possible to retrieve the n-nearest states
(and their corresponding previous rewards, actions) from Dj . We refer to this as the context ct ∈ Cj .
The set Cj is the set of all such contexts in environment j. We also call the state st the query state
following terminology from retrieval-augmented generation for language modeling [19].

The R&P agent takes the state st and context ct as input, picks the nearest retrieved state s′ in ct, and
plays the corresponding action a′. That is, πR&P(st, ct) = a′. We describe the retrieval process in
detail later in Section 4.2. Clearly, R&P is devoid of any learning components which can transfer
capabilities from pre-training to unseen environments.

4.2 RETRIEVAL-AUGMENTED GENERALIST AGENT (REGENT)

To go beyond R&P, we posit that if an agent learns to meaningfully combine relevant context to
act in a set of training environments, then this skill should be transferable to novel environments as
well. We propose exactly such an agent in REGENT. We provide an overview of REGENT in Figure
3 where we depict the reinforcement learning loop with the retrieval mechanism and the REGENT
transformer. In the figure, we also include the retrieved context and query inputs to the transformer
and its output interpolation with the R&P action. We describe REGENT in detail below.

REGENT consists of a deep neural network policy πθ, which takes as input the state st, previous
reward rt−1, context ct, and outputs the action directly for continuous environments and the logits
over the actions in discrete environments. In the context ct, the retrieved tuples of (state, previous
reward, action) are placed in order of their closesness to the query state st with the closest retrieved
state s′ placed first. Let d(st, s′) be the distance between st and s′. We perform a distance weighted
interpolation between the outputs of the neural network policy and R&P as follows,

πθ
REGENT(st, rt−1, ct) = e−λd(st,s

′)πR&P(st, ct) + (1− e−λd(st,s
′))σ(πθ(st, rt−1, ct)) (1)

σ(x) =

{
Softmax(x), if action space is discrete
L×MixedReLU(x), if action space is continuous

(2)

where MixedReLU : R → [−1, 1] is a tanh-like activation function from [41] and is detailed in
Appendix A. Further, L ∈ R is a hyperparameter for scaling the output of the neural network for
continuous action spaces after the MixedReLU. We simply set both L and λ to 10 everywhere
following a similar choice in [41]. The function πθ is a causal transformer, which is adept at modeling

4

Under review as a conference paper at ICLR 2025

Figure 3: The REGENT architecture and overview. (1) A query state (from the unseen environment
during deployment or from training environments’ datasets during pre-training) is processed for
retrieval. (2) The n nearest states from a few demonstrations in an unseen environment or from a
designated retrieval subset of pre-training environments’ datasets are retrieved. These states, and their
corresponding previous rewards and actions, are added to the context in order of their closeness to the
query state, followed by the query state and previous reward. (3) The predictions from the REGENT
transformer are combined with the first retrieved action. (4) At deployment, only the predicted query
action is used. During pre-training, the loss from predicting all actions is used to train the transformer.

relatively long sequences of contextual information and predicting the optimal action [26, 4, 7, 25].
All distances are normalized and clipped to [0, 1] as detailed in Appendix A. For discrete action
spaces, where the transformer outputs a distribution over actions, we modify πR&P as follows. Let us
assume that the discrete action space consists of Nact different actions.

πR&P(a|st, ct) =

{
1+(Nact−1)(1−d(st,s

′))
Nact

, if a = a′

d(st,s
′)

Nact
, if a ̸= a′

(3)

The distribution induced by the modified πR&P function assigns all probability mass to the action a′

when d(st, s
′) = 0 and acts like a uniform distribution when d(st, s

′) = 1, thereby preventing bias
toward any single logit. As shown in Figure 3, for predicting each action, either for a retrieved state
in the context or for the query state, we set d(s, s′) in Equations (1) and (3) to the distance between
that state s and the first (closest) retrieved state in the context s′.

Further, the exponential weights in Equation (1) allows us to smoothly transition between R&P and
the parametric policy πθ. When the state st is close enough to first retrieved state in the context ct,
πREGENT simply plays the retrieved action. However, as it moves further away, policy πR&P becomes
a uniform distribution and the parametric policy πθ takes more precedence. We also hypothesize
that this interpolation allows the transformer to more readily generalize to unseen environments,
since it is given the easier task of predicting the residual to the R&P action rather than predicting the
complete action.

Pre-training REGENT and Loss Function: We train REGENT by minimizing the total cross-entropy
loss on discrete actions and total mean-squared error on continuous actions for all n + 1 action
predictions (n in the context and 1 query). We also follow the JAT recipe in ensuring that each
training batch consists only of data from a single environment’s dataset. We provide details about the
training hyperparameters in Appendix A.

REGENTArchitecture: REGENT adapts the JAT architecture in the JAT/Gato setting. It consists of
a causal transformer trunk. It has a shared linear encoder for image embeddings, vector observations,
and continuous actions. This encoder takes a maximum input vector of length 513, accommodating

5

Under review as a conference paper at ICLR 2025

the largest input vectors—image embeddings of size 512—plus a single reward value. When the
length of an input vector is less than that, it is cyclically repeated and padded to the maximum length.
It has a large shared lookup table with the GPT2 [31] vocabulary size for encoding discrete actions,
discrete observations, and text observations. Another linear layer is used to combine multiple discrete
values and text tokens present in a single observation vector. It has a shared linear head for predicting
continuous actions. A shared linear head is used for predicting distributions over discrete actions.
All of the above components are shared across environments but only a subset of input encoders and
output heads may be triggered during a forward and backward pass depending on the input modalities
in an environment and output action space. We note that states and rewards are concatenated together
before encoding following the JAT recipe [18]. REGENT has a total of 138.6M parameters, including
the frozen ResNet18 image encoder, compared to JAT’s 192.7M parameters.

We simplify REGENT for the ProcGen setting keeping the transformer trunk with only a convolution
encoder for direct image inputs; a lookup table for encoding discrete actions; and a linear head for
predicting distributions over discrete actions. Here, following the MTT recipe, we do not use any
rewards. We only use the states and actions. Here, REGENT has a total of 116M parameters compared
to MTT’s 310M parameters. We detail all architectural hyperparameters and the differences between
JAT, MTT, and REGENT in Appendix A.

REGENT Training Data and Environment Suites: In the JAT/Gato setting, we pre-train on
100k transitions in each of the 45 Metaworld training environments, 9 Mujoco training environments,
52 Atari training environments, and 39 BabyAI training environments. This adds up to a total of
14.5M transitions used to pre-train REGENT. We obtain these transitions by taking a subset of the
open-source JAT dataset [18]. The complete JAT dataset consists of 5-10x the amount of data we
use in each environment. The Atari environments have 18 discrete actions and four consecutive
grayscale images as states. However, we embed each combined four-stacked image into a vector of
512 dimensions and use this image embedding everywhere (for R&P and REGENT). The details of
embedding images are discussed later in this Section. The Metaworld and Mujoco environments
have proprioceptive vector observations and continuous action spaces. All Metaworld environments
have observations with 39 dimensions and actions with 4 dimensions. Mujoco environments have
observations with 4 to 376 dimensions and actions with 1 to 17 dimensions. The BabyAI environments
have discrete observations and up to 7 discrete actions. They also have text observations specifying
a goal in natural language. Together, after tokenizing the text into 64 tokens, BabyAI observations
have 212 dimensions and consist only of discrete values.

In the ProcGen setting that borrows from MTT [33], we generate 20 rollouts with PPO policies
on each of the 12 training environments for various levels depending on the environment. We do
so to ensure that the total number of transitions in each environment is 1M. The total size of the
pre-training dataset is 12M. All environments have an image-based state space and discrete actions.
The number of levels varies from 63 at the smallest in bigfish to 1565 at the largest in maze. This
variation arises from the difference in rollout horizon in each environment. We note that, even the
largest value of 1565 levels in maze is an order-of-magnitude fewer than the 10,000 levels in each
game used by MTT for pre-training.

Processing Raw Observations, Distance Metrics, Retrieval Mechanism, and Preprocessing
Training Data: In the JAT/Gato setting, if the raw observations consist of images, we embed the
image with an off-the-shelf ResNet18 encoder [12] trained only on ImageNet data. If instead, the raw
observations are proprioceptive vectors, we use them directly without modification. In the ProcGen
setting, the raw observations consist of images that we use directly without modification.

In the JAT/Gato setting, we use the ℓ2 distance metric to compute distances between pairs of
observations, regardless of whether they are image embeddings or proprioceptive vectors. To
significantly speed up the search for nearest states to a query state, we leverage similarity search
indices [14]. In the ProcGen setting, we utilize the SSIM distance metric [46] to obtain distances
between two images. We perform a naive search for the nearest images to a query image, however all
SSIM distance calculations are parallelized on GPUs to speed up the retrieval process.

R&P simply performs the retrieval process described above at evaluation time, obtains the closest
state to a query state, and plays the corresponding action. REGENT on the other hand has to setup its
pre-training dataset as follows. It first designates a certain number of randomly chosen demonstrations
per environment as the retrieval set in that environment. This is described in Appendix A. Then,

6

Under review as a conference paper at ICLR 2025

for each state in each environment’s training dataset, we retrieve the n = 19 closest states from the
designated retrieval subset for that dataset. We ensure that none of the retrieved states are from the
same demonstration as the query state. In this process, we convert our dataset of transitions to a
dataset of (context, query state, query reward) datapoints where the context consists of 19 retrieved
(state, reward, action) tuples. Now, we can begin pre-training REGENT on this dataset.

Evaluating REGENT: After pre-training, in each of the two settings, we have one model that can be
deployed directly, without finetuning, on unseen environments. During deployment in an environment,
at each step, we retrieve the n = 19 closest states to the current query state (and their corresponding
actions and rewards). We pass this context with the query state, and previous reward into Equation
(1) through the architecture described above to predict the query action to take in the environment.

In the JAT/Gato setting, for the unseen environments, we hold-out 5 Metaworld, 5 Atari, and two
Mujoco environments (see Figure 1). In the ProcGen setting, following MTT [33], we hold-out 5
environments. Unlike MTT, we also evaluate on unseen levels in training environments (see Figure
2). We explain these choices in Appendix A. In this work, we focus on unseen environments in the
same suite as training environments and leave further generalization to future work. Finally, we also
note that in all game-playing environments, we add a small sticky probability [27] of 0.05 in unseen
Atari environments and 0.2 in unseen ProcGen environments following [33]. This is not present in
any data or demonstration, which induces further stochasticity and tests the ability of both R&P and
REGENT to truly generalize under novel and stochastic dynamics.

5 SUB-OPTIMALITY BOUND FOR REGENT POLICIES

In this section, we aim to bound the sub-optimality of the REGENT policy. This is measured with
respect to the expert policy π∗

j , that generated the retrieval demonstrations Dj . We focus on the
discrete action case here and leave the continuous action case for future work. The sub-optimality gap
in (training or unseen) environment j is given by (J(π∗

j)− J(πθ
REGENT)). Inspired by the theoretical

analysis of Sridhar et al. [41], we define the "most isolated state" and use this definition to bound the
total variation in the REGENT policy class and hence the sub-optimality gap.

That is, first, given Dj , we wish to obtain the maximum value of the distance term d(st, s
′) in

Equations (1) and (3). To do so, we define the most isolated state as follows.
Definition 5.1 (Most Isolated State). For a given set of retrieval demonstrations Dj in environment j,
we define the most isolated state sIDj

:= argmax
s∈Sj

(
min
s′∈Dj

d(s, s′)
)
, and consequently the distance to

the most isolated state as dIDj
= min

s′∈Dj

d(sIDj
, s′).

All distances between a state in this environment and its closest retrieved state are less than the above
value, which also measures state space coverage by the demonstrations available for retrieval. Using
the above definition, we have the following.
Theorem 5.2. The sub-optimality gap in environment j is

J(π∗
j)− J(πθ

REGENT) ≤ min{H,H2(1− e
−λdI

Dj)}

Proof : We provide the proof in Appendix B.

The main consequence of this theorem, also observed in our results, is that the sub-optimality gap
reduces with more demonstrations in Dj because of the reduced distance to the most isolated state.

6 EXPERIMENTAL EVALUATION

In our experiments, we aim to answer the following key questions in the two settings depicted in
Figures 1 and 2. (1) How well can R&P and REGENT generalize to unseen environments? (2) How
does finetuning in the new environments improve REGENT? (3) How well can REGENT generalize to
variations of the training environments and perform in aggregate on training environments? (4) How
does REGENT qualitatively compare with R&P in using the retrieved context?

Metrics: We plot the normalized return computed using the return of a random and expert agent
in each environment as (total return−random return)

(expert return−random return) . The expert and random returns for all JAT/Gato

7

Under review as a conference paper at ICLR 2025

Figure 4: Normalized returns in the unseen Metaworld and Atari environments against the number of
demonstration trajectories the agent can retrieve from or finetune on. Each value is an average across
100 rollouts of different seeds in Metaworld and 15 rollouts of different seeds (with psticky = 0.05) in
Atari. See Table 1 for detailed results.

environments are made available in the original work [18]. The expert and random returns for the
ProcGen environments can be found in the original ProcGen paper [10].

Baselines: We consider a different set of baselines for each of the two settings. In the JAT/Gato
setting, we compare R&P and REGENT with two variants of JAT. The first is a JAT model trained on
the same dataset as REGENT. The second is a JAT model trained on all available JAT data which
consists of an order of magnitude more datapoints (in particular, 5x more data in Atari environments
and 10x more data in all other environments). We label the former apples-to-apples comparison as
JAT/Gato and the latter as JAT/Gato (All Data). All hyperparameters are in Appendix A.

In the ProcGen setting, we compare with MTT [33]. MTT only reports results on unseen environments
and not on unseen levels in training environments. We simply take the best MTT result on each of the
four unseen environments in [33], obtained when 4 demonstrations are included in the MTT context.

Finetuning and Train-from-scratch Baselines: We finetune JAT/Gato and JAT/Gato (All
Data) on various number of demonstrations in each unseen environment in the JAT/Gato setting
and compare with REGENT. We also compare with a train-from-scratch behavior cloning baseline.
For completeness, we also finetune REGENT on various number of demonstrations in each unseen
environment in the JAT/Gato setting. The finetuning hyperparameters are the same for all methods
and can be found with the train-from-scratch details in Appendix A.

Generalization to Unseen Environments: We plot the normalized return obtained by all methods
in unseen Metaworld and Atari environments from the JAT/Gato setting for various number of
demonstrations (25, 50, 75, 100) in Figure 4. For a fair comparison across Atari environments with
marked differences in episode horizons, we plot normalized return against various number of states in
the demonstrations (atleast 10k, 15k, 20k, 25k) rather than the number of demonstrations itself. These
demonstrations can be used by the different methods for retrieval or fine-tuning. We also plot the
normalized return obtained by all methods in unseen ProcGen environments against various number
of demonstrations (2, 4, 8, 12, 16, 20) to retrieve from in Figure 5. As mentioned before in Section
4.2, unseen Atari environments have a sticky probability of 0.05 and unseen ProcGen environments
have a sticky probability of 0.2.

In both Figures 4 and 5, we observe that R&P and REGENT can generalize well to unseen Atari and
ProcGen environments with image observations and discrete actions as well as to unseen Metaworld
environments with vector observations and continuous actions. R&P is a surprisingly strong baseline,

8

Under review as a conference paper at ICLR 2025

Figure 5: Normalized returns in unseen ProcGen environments against the number of demonstration
trajectories the agent can retrieve from. Each value is an average across 10 levels with 5 rollouts each
with psticky = 0.2. See Table 7 for detailed results.

Figure 6: Normalized returns in unseen levels in 4 (of 12) ProcGen training environments against the
number of demonstration trajectories the agent can retrieve from. Each value is an average across 10
levels with 5 rollouts each with psticky = 0.1. The other 8 plots are similar to the above and can be
found in Figure 15 (in Appendix D). See Table 8 for detailed results.

but REGENT improves on R&P consistently. In general, both methods appear to steadily improve
with more demonstrations (with only a few exceptions).

In Figure 4, we observe that JAT/Gato cannot generalize to most unseen environments. REGENT
(and even R&P) outperform even the All Data variants of JAT/Gato which were pre-trained on
5-10x the size of the REGENT dataset. The sticky probability in unseen Atari environments adds
further stochasticity and stress tests true generalization against simply replaying demonstrations.

In Figure 5, REGENT (and even R&P) outperform MTT which was trained on an order of magnitude
more training levels and data than REGENT while also having approximately 3x the parameters.

Effect of Finetuning: From Figure 4, we see that JAT/Gato, along with its All Data variant,
struggles to perform even after finetuning. Training from scratch on the few demonstrations in
each unseen environment also does not obtain any meaningful performance in most environments.
JAT/Gato (and even R&P), without any finetuning, outperform both finetuned variants of JAT/Gato.
Moreover, we can see that REGENT further improves marginally after finetuning, even with only a
few demonstrations.

To highlight REGENT’s ability to adapt from very little data, we note that in Figure 4, we only
vary the number of states in Atari demonstrations until 25k. Whereas, the closest generalist policy
that finetunes to new Atari environments, the multi-game decision transformer [25], requires 1M
transitions. Finally, we note that all methods face a hurdle in generalizing to the very long-horizon
atari-spaceinvaders and atari-stargunner environments, which have horizons about 10x that of atari-
pong and hence have not been shown in Figure 4. Generalization to the new embodiments in the two
unseen Mujoco environments proves equally challenging, we discuss this in detail in Appendix C.

Generalization to Variations of the Training Environments: In the ProcGen setting in Figure
2, the unseen levels of the 12 training environments provide an avenue to test a middle ground of
generalization between training and unseen environments. We plot the normalized returns on unseen
levels of 4 (of 12) training environments (with a sticky probability of 0.1) in Figure 6. The remaining
can be found in Figure 15 (Appendix D) and are similar to the above 4. In Figure 6, we again observe

9

Under review as a conference paper at ICLR 2025

Figure 7: Aggregate normalized returns in the 45 training Metaworld environments, 9 training Mujoco
environments, 52 training Atari environments, and 39 training BabyAI environments. See Figures 11,
12, 13, 14 (in Appendix C) for performance on each training environment of each suite.

Figure 8: Qualitative examples of a few inputs and outputs of REGENT for two states in a rendered
rollout in the unseen, discrete action space, atari-pong environment. REGENT leverages its in-context
learning capabilities and interpolation with R&P to either make a simple decision and predict the
same action as R&P (see blue box on the right) or predict better actions at key states (see black box
on the left) that leads to better overall performance as seen in Figure 4.

that REGENT performs the best in unseen levels while R&P remains a strong baseline. We also depict
the performance of REGENT on seen levels of these training environments with a dotted line in this
Figure. This represents an upper bound for REGENT’s performance in unseen levels. We observe that
with a large number of demonstrations, REGENT appears to reach close to this upper bound simply
via retrieval-augmentation and in-context learning in some environments.

Aggregate Performance on Training Environments: We plot the aggregate normalized return, both
IQM [1] and mean, on training environments for each of the 4 suites (in the JAT/Gato setting) in
Figure 7. We notice that REGENT significantly exceeds JAT/Gato on Metaworld, exceeds it on Atari,
matches it on Mujoco, and is close to matching it on BabyAI. This demonstrates the dual advantage
of REGENT which gains the capability to generalize to unseen environments while preserving overall
multi-task performance in training environments.

Qualitative Examples: We plot examples of the inputs and outputs of REGENT at various states
during a rendered rollout in the atari-pong environment in Figure 8 to highlight REGENT’s learned
in-context learning capabilities and interpolation with R&P. We also provide a qualitative example in
a continuous metaworld environment in Appendix C.

7 CONCLUSIONS AND FUTURE WORK

In this work, we demonstrated that retrieval offers generalist agents a powerful bias for rapid
adaptation to new environments, even without large models and vast datasets. We showed that
a simple retrieval-based 1-nearest neighbor agent, Retrieve and Play (R&P), is a strong baseline
that matches or exceeds the performance of today’s state-of-the-art generalist agents in unseen
environments. Building on this, we proposed a semi-parametric generalist agent, REGENT, that pre-
trains a transformer-based policy on sequences of query state, reward, and retrieved context. REGENT
exploits retrieval-augmentation and in-context learning for near-instantaneous deployment in unseen
environments with only a few demonstrations. Even after pre-training on an order of magnitude fewer

10

Under review as a conference paper at ICLR 2025

datapoints than other generalist agents and with fewer parameters, REGENT outperforms them across
unseen environments and surpasses them even after they have been finetuned on demonstrations from
those unseen environments. REGENT, itself, further improves with finetuning on even a small number
of demonstrations. We note that REGENT faces a couple of limitations: adapting to new embodiments
and long-horizon environments. In future work, we believe a larger diversity of embodiments in
the training dataset and improved retrieval from longer demonstrations can help REGENT overcome
these challenges. We conclude with the conviction that retrieval in general and REGENT in particular
redefines the possibilities for developing highly adaptive and efficient generalist agents, even with
limited resources.

11

Under review as a conference paper at ICLR 2025

Acknowledgements: This work was supported in part by ARO MURI W911NF-20-1-0080, NSF
2143274, NSF CAREER 2239301, NSF 2331783, and ONR N00014-22-12677. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views the Army Research Office (ARO), Office of Naval Research (ONR),
the Department of Defense, or the United States Government.

Reproducibility statement: To ensure reproducibility, we have released all code at https://
kaustubhsridhar.github.io/regent-research. We have also described all datasets,
environment suites, baselines, and REGENT itself in detail in Section 4, Section 6, and Appendix A.

REFERENCES

[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in neural
information processing systems, 34:29304–29320, 2021. (Cited on 10)

[2] M Saiful Bari, Batool Haider, and Saab Mansour. Nearest neighbour few-shot learning for
cross-lingual classification. arXiv preprint arXiv:2109.02221, 2021. (Cited on 4)

[3] Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and
Vikash Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic
augmentations and action chunking. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4788–4795. IEEE, 2024. (Cited on 2, 3)

[4] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
et al. Improving language models by retrieving from trillions of tokens. In International
conference on machine learning, pp. 2206–2240. PMLR, 2022. (Cited on 3, 5)

[5] Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria
Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-
improving foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.
(Cited on 1, 2)

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022. (Cited on 1,
2, 3)

[7] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021. (Cited on 5)

[8] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019. (Cited on 4)

[9] Hao-Tien Lewis Chiang, Zhuo Xu, Zipeng Fu, Mithun George Jacob, Tingnan Zhang, Tsang-
Wei Edward Lee, Wenhao Yu, Connor Schenck, David Rendleman, Dhruv Shah, et al. Mobility
vla: Multimodal instruction navigation with long-context vlms and topological graphs. arXiv
preprint arXiv:2407.07775, 2024. (Cited on 2, 3)

[10] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020. (Cited on 8)

[11] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2019. (Cited on 17)

[12] Sudeep Dasari, Mohan Kumar Srirama, Unnat Jain, and Abhinav Gupta. An unbiased look
at datasets for visuo-motor pre-training. In Conference on Robot Learning, pp. 1183–1198.
PMLR, 2023. (Cited on 6, 16)

12

https://kaustubhsridhar.github.io/regent-research
https://kaustubhsridhar.github.io/regent-research
http://pybullet.org

Under review as a conference paper at ICLR 2025

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.
(Cited on 17)

[14] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv
preprint arXiv:2401.08281, 2024. (Cited on 6)

[15] Souradeep Dutta, Kaustubh Sridhar, Osbert Bastani, Edgar Dobriban, James Weimer, Insup Lee,
and Julia Parish-Morris. Exploring with sticky mittens: Reinforcement learning with expert
interventions via option templates. In Conference on Robot Learning, pp. 1499–1509. PMLR,
2023. (Cited on 17)

[16] Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Salvador, Luca Weihs, Kuo-Hao Zeng,
Kunal Pratap Singh, Yejin Kim, Winson Han, Alvaro Herrasti, et al. Imitating shortest paths
in simulation enables effective navigation and manipulation in the real world. arXiv preprint
arXiv:2312.02976, 2023. (Cited on 2)

[17] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on machine
learning, pp. 1407–1416. PMLR, 2018. (Cited on 16)

[18] Quentin Gallouédec, Edward Beeching, Clément Romac, and Emmanuel Dellandréa. Jack of
all trades, master of some, a multi-purpose transformer agent. arXiv preprint arXiv:2402.09844,
2024. (Cited on 1, 2, 6, 8, 16)

[19] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023. (Cited on 1, 3, 4)

[20] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In International conference on machine learning, pp.
3929–3938. PMLR, 2020. (Cited on 3)

[21] Siddhant Haldar, Zhuoran Peng, and Lerrel Pinto. Baku: An efficient transformer for multi-task
policy learning. arXiv preprint arXiv:2406.07539, 2024. (Cited on 2, 3)

[22] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024. (Cited on 1, 2, 3)

[23] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement
learning with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022. (Cited on 3)

[24] Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024. (Cited on 3)

[25] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio
Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game
decision transformers. Advances in Neural Information Processing Systems, 35:27921–27936,
2022. (Cited on 1, 2, 3, 5, 9, 17)

[26] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020. (Cited on 3, 5)

[27] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.
(Cited on 7)

13

Under review as a conference paper at ICLR 2025

[28] Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Kovatchev, and Claudio
Cobelli. The uva/padova type 1 diabetes simulator: new features. Journal of diabetes science
and technology, 8(1):26–34, 2014. (Cited on 17)

[29] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan,
Alexander Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023. (Cited on 1,
2, 3)

[30] Jean Park, Sydney Pugh, Kaustubh Sridhar, Mengyu Liu, Navish Yarna, Ramneet Kaur,
Souradeep Dutta, Elena Bernardis, Oleg Sokolsky, and Insup Lee. Automating weak label
generation for data programming with clinicians in the loop. In Conference on Connected
Health: Applications, Systems and Engineering Technologies (CHASE), 2024. (Cited on 17)

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. (Cited on 6)

[32] Nived Rajaraman, Lin F. Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental
limits of imitation learning. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546. (Cited on 18)

[33] Sharath Chandra Raparthy, Eric Hambro, Robert Kirk, Mikael Henaff, and Roberta Raileanu.
Generalization to new sequential decision making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023. (Cited on 1, 2, 3, 6, 7, 8, 17, 26)

[34] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022. (Cited on 1, 2)

[35] Dhruv Shah, Ajay Sridhar, Arjun Bhorkar, Noriaki Hirose, and Sergey Levine. Gnm: A general
navigation model to drive any robot. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7226–7233. IEEE, 2023. (Cited on 2)

[36] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hi-
rose, and Sergey Levine. Vint: A foundation model for visual navigation. arXiv preprint
arXiv:2306.14846, 2023. (Cited on 2)

[37] Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill.
The transient nature of emergent in-context learning in transformers. Advances in Neural
Information Processing Systems, 36, 2024. (Cited on 16)

[38] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017. (Cited on 4)

[39] Kaustubh Sridhar and Srikant Sukumar. Finite-time, event-triggered tracking control of quadro-
tors. In 5th CEAS Specialist Conference on Guidance, Navigation & Control (EurGNC 19)
Milano, Italy, 2019. (Cited on 17)

[40] Kaustubh Sridhar, Oleg Sokolsky, Insup Lee, and James Weimer. Improving neural network
robustness via persistency of excitation. In 2022 American Control Conference (ACC), pp.
1521–1526. IEEE, 2022. (Cited on 17)

[41] Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, James Weimer, and Insup Lee. Memory-
consistent neural networks for imitation learning. arXiv preprint arXiv:2310.06171, 2023. (Cited
on 4, 7, 16, 17)

[42] Kaustubh Sridhar, Souradeep Dutta, James Weimer, and Insup Lee. Guaranteed conformance of
neurosymbolic models to natural constraints. In Learning for Dynamics and Control Conference,
pp. 76–89. PMLR, 2023. (Cited on 17)

[43] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024. (Cited on 1, 2, 3)

14

Under review as a conference paper at ICLR 2025

[44] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for
one shot learning. Advances in neural information processing systems, 29, 2016. (Cited on 4)

[45] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens Van Der Maaten. Simpleshot: Re-
visiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623,
2019. (Cited on 4)

[46] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):
600–612, 2004. (Cited on 6)

[47] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In international
conference on machine learning, pp. 24631–24645. PMLR, 2022. (Cited on 3)

[48] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering. arXiv preprint arXiv:2405.15793, 2024. (Cited on 1)

[49] Jonathan Yang, Dorsa Sadigh, and Chelsea Finn. Polybot: Training one policy across robots
while embracing variability. arXiv preprint arXiv:2307.03719, 2023. (Cited on 2)

[50] Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv Shah, Quan Vuong, Chelsea Finn,
Dorsa Sadigh, and Sergey Levine. Pushing the limits of cross-embodiment learning for manipu-
lation and navigation. arXiv preprint arXiv:2402.19432, 2024. (Cited on 2)

[51] Yahan Yang, Ramneet Kaur, Souradeep Dutta, and Insup Lee. Interpretable detection of distri-
bution shifts in learning enabled cyber-physical systems. In 2022 ACM/IEEE 13th International
Conference on Cyber-Physical Systems (ICCPS), pp. 225–235. IEEE, 2022. (Cited on 17)

[52] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pp. 1094–1100. PMLR, 2020. (Cited on 17)

[53] Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong,
and Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024. (Cited on 2)

[54] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush
Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for
robot learning. arXiv preprint arXiv:2009.12293, 2020. (Cited on 17)

[55] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul
Wohlhart, Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer
web knowledge to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR,
2023. (Cited on 1, 2, 3)

15

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL DETAILS ON REGENT: A RETRIEVAL AUGMENTED
GENERALIST AGENT

MixedReLU activation: MixedReLU is a tanh-like activation function from [41] given by
MixedReLU(x) = (2(ReLU(x+1

2) − ReLU(x−1
2)) − 1) which simplifies to −1 for x < −1, x

for −1 ≤ x ≤ 1, and 1 for x > 1.

Normalizing distances to [0, 1]: We compute the 95th percentile of all distances d(s, s′) between any
(retrieved or query) state s and the first (closest) retrieved state s′. This value is computed from the
demonstrations Dj and is used to normalize all distances in that environment. This value is calculated
for all (training or unseen) environments during the preprocessing stage. If after normalization, a
distance value is greater than 1, we simply clip it to 1.

Architectural hyperparameters: In both settings, the transformer trunk consists of 12 layers and 12
heads with a hidden size of 768. We set the maximum position encodings to 40 for 20 (state, previous
reward)’s and 20 actions. Of these 20, 19 belong to the retrieved context and 1 belongs to the query.
In the JAT/Gato setting, the maximum multi-discrete observation size is 212 (for BabyAI). The
maximum continuous observation size as discussed before in Section 4 is set to 513, a consequence of
the ResNet18 image embedding models’s [12] embedding size of 512 with an additional 1 dimension
for the reward. All linear encoding layers map from their corresponding input size to the hidden size.
Following the JAT model, the linear decoder head for predicting continuous actions maps from the
hidden size to the maximum continuous size discussed above (513). On the other hand, the linear
decoder head for predicting distributions over discrete actions maps from the hidden size to only
the maximum number of discrete actions across all discrete environments (18), whereas in the JAT
model, they map to the full GPT2 vocab size of 50257.

In the JAT/Gato setting, the original JAT architecture has a much larger context size (that is
not required for REGENT), a larger image encoder (than the resnet18 used in REGENT), a much
larger discrete decoder predicting distributions over the entire GPT2 vocab size (instead of just the
maximum number of discrete actions in REGENT), and has (optional) decoders for predicting various
observations (that is also not required for REGENT).

In the ProcGen setting, MTT has a 18 layers, 16 heads, and a hidden size of 1024 – all three of which
are much larger than REGENT’s architectural hyperparameters mentioned above.

Training hyperparameters: In the JAT/Gato setting, we use a batch size of 512 and the AdamW
optimizer with parameters β1 = 0.9 and β2 = 0.999. The learning rate starts at 5e-5 and decays to
zero through 3 epochs over all pre-training data. We early stop after a single epoch because we find
that overtraining reduces in-context learning performance. This observation is consistent with similar
observations about the transience of in-context learning in literature [37].

In the ProcGen setting, we use a batch size of 1024, a starting learning of 1e-4 also decaying over 3
epochs over all the pre-training data with an early stop after the first epoch. We again use the AdamW
optimizer with parameters β1 = 0.9 and β2 = 0.95.

Re-training JAT/Gato hyperparameters: When retraining JAT/Gato, we follow all hypeper-
maters chosen in [18]. We note that we skip the VQA datasets in our retraining of JAT/Gato, and
use a smaller batch size to fit available GPUs. For JAT/Gato (All Data) we train over the full
JAT dataset for the specified 250k training steps. For JAT/Gato we train on the REGENT subset
(which is 5-10x smaller) for 25k training steps. In both variants, the training loss converges to the
same low value at about 5000 steps into the training run.

Finetuning hyperparemeters: Starting from a pre-trained checkpoint, we finetune using the same
optimizer as pre-training time but starting with 1/10th the learning rate (i.e., 5e-6) and for 3 epochs
over the finetuning demonstrations. We use this same recipe across all environments and for both
REGENT and JAT/Gato. We only use 3 epochs to prevent the overwriting of any capabilities learned
during pre-training.

Train-from-scratch baseline: For the policy in this baseline, we use the Impala CNN [17] in Atari
environments and a MLP with two hidden layers with 256 neurons each in Metaworld and Mujoco

16

Under review as a conference paper at ICLR 2025

environments. We use the same learning rate (5e-5) for the same 3 epochs with the same optimizer
(AdamW with β1 = 0.9 and β2 = 0.999) as used for REGENT except we use a constant learning rate
schedule.

Designating retrieval demonstrations in each training environment’s dataset: In the JAT/Gato
setting, we designate 100 random demonstrations from the each of training vector observation
environments as the retrieval subset for that environment. We also designate 5 random demonstrations
from the training image environments as the retrieval subsets for said environments. In the ProcGen
setting, with only 20 demonstrations per level per environment, we designate all 20 as the retrieval
set for that level in that environment.

We use all states in all demonstrations in each training environment’s dataset as query states. So,
when a query state is from a demonstration in the designated retrieval subset, we simply retrieve
from all other demonstrations in the designated retrieval subset except the current one. When a
query state is from a demonstration not in the designated retrieval subset, we retrieve simply from
the designated retrieval subset. This way, we ensure that none of the retrieved states are from the
same demonstration as the query state. A possible direction for future work includes intelligently
designating and collecting demonstrations for retrieval (perhaps using ideas like persistency of
excitation [40], memory-based methods [51, 41, 42, 30], expert intervention methods [15]).

Choice of held-out environments: In the JAT/Gato setting, for the unseen environments, we
hold-out the 5 Metaworld environments recommended in [52], the 5 Atari environments held-out
in [25], and finally, we choose two Mujoco environments of mixed difficulty (see Figure 1). In the
ProcGen setting, following MTT [33], we hold-out 5 environments.

In this work, we generalize to unseen environments from the same suites as the training environments.
In future work, it would be interesting to examine what is needed for generalization to new suites (such
as more manipulation suites [54], quadrotor, driving simulators [11, 13, 39], biological simulation
[28], etc.).

B PROOF OF THEOREM 5.2

To prove theorem 5.2, we first state and prove the following lemma.

Let us refer to the family of policies represented by πθ
REGENT(a|s, r, c) in Equation (1) for various θ as

Πθ(a|s, r, c). The parameters θ of the transformer are drawn from the space Θ.
Lemma B.1. (Total Variation in the Policy Class) The total variation of the policy class Πθ(a|s, r, c)
in environment j, ∀ θ1, θ2 ∈ Θ and for some s ∈ Sj , r ∈ Rj , c ∈ Cj , defined as

sup
θ1,θ2

sup
a

|πθ1
REGENT(a|s, r, c)− πθ2

REGENT(a|s, r, c)|, is upper bounded by (1− e
−λdI

Dj).

Proof : We have,

sup
θ1,θ2

sup
a

|πθ1
REGENT(a|s, r, c)− πθ2

REGENT(a|s, r, c)|

= sup
θ1,θ2

sup
a

(1− e−λd)

(
Softmax(πθ1(a|s, r, c))− Softmax(πθ2(a|s, r, c))

)
(4)

= (1− e−λd)sup
θ1,θ2

sup
a

(
Softmax(πθ1(a|s, r, c))− Softmax(πθ2(a|s, r, c))

)
(5)

≤ (1− e
−λdI

Dj) (6)

The first equality holds because for the same tuple of (state, previous reward, context), the R&P
component does not change since it is not affected by the choice of parameters. The last inequality
can be interpreted as a property of Softmax and the distance to the most isolated state.

Now, we rewrite theorem 5.2 below and prove it.
Theorem B.2. The sub-optimality gap in environment j is

J(π∗
j)− J(πθ

REGENT) ≤ min{H,H2(1− e
−λdI

Dj)}

17

Under review as a conference paper at ICLR 2025

Proof : Recall that in imitation learning, if the population total variation (TV) risk T(π̂, π∗) ≤ ϵ,
then, J(π∗)− J(π̂) ≤ min{H,H2ϵ} (See [32] Lemma 4.3). Using this with Lemma B.1 proves the
theorem.

The main consequence of this theorem, also observed in our results, is that the sub-optimality gap
reduces with more demonstrations in Dj because of the reduced distance to the most isolated state.

18

Under review as a conference paper at ICLR 2025

C ADDITIONAL JAT/GATO RESULTS

Generalization to unseen Mujoco environments/embodiments: In the two unseen Mujoco tasks
shown in Figure 9, R&P appears to be a strong baseline even at generalizing to new embodiments!
Moreover, after finetuning on just 25 demonstrations, only REGENT, not JAT/Gato, significantly
improves to outperform other methods and only continues to get better with more demonstrations.

Figure 9: Normalized returns in the unseen Mujoco environments against the number of demonstration
trajectories the agent can retrieve from or finetune on. Each value is an average across 100 rollouts of
different seeds.

Additional qualitative examples: We plot examples of the inputs and outputs of REGENT at various
states during a rendered rollout in the metaworld-bin-picking environment in Figure 10. In this
continuous Metaworld example, REGENT can be seen predicting actions that are somewhat similar
to but not the same as the first retrieved (R&P) action. These differences lead to better overall
performance as seen in Figure 4. These differences are also the direct result of REGENT’s in-context
learning capabilities, learned from the preprocessed datasets from the pre-training environments.

Figure 10: Qualitative examples of a few inputs and outputs of REGENT for various states in a
rendered rollout in the unseen, continuous action space, metaworld-bin-picking environment.

19

Under review as a conference paper at ICLR 2025

Figure 11: Normalized returns in each of the 45 seen Metaworld envs. Each value is an average
across 100 rollouts of different seeds. See Table 3 for all values.

Figure 12: Normalized returns in each of the 9 seen Mujoco envs. Each value is an average across
100 rollouts of different seeds. See Table 4 for all values.

Figure 13: Normalized returns in each of the 52 seen Atari envs. Each value is an average across 15
rollouts of different seeds. See Table 5 for all values.

Figure 14: Normalized returns in each of the 45 seen BabyAI envs. Each value is an average across
100 rollouts of different seeds. See Table 6 for all values.

20

Under review as a conference paper at ICLR 2025

Env Num R&P REGENT REGENT JAT/Gato JAT/Gato JAT/Gato JAT/Gato Train
demos Finetuned Finetuned (All Data) (All Data) From

Finetuned Scratch
metaworld-bin-picking 25 0.33 0.19 0.27 0.0 0.0 0.0 0.0 0.0
metaworld-bin-picking 50 0.4 0.53 0.6 0.0 0.0 0.0 0.0 0.0
metaworld-bin-picking 75 0.34 0.53 0.66 0.0 0.01 0.0 0.01 0.0
metaworld-bin-picking 100 0.33 0.65 0.73 0.0 0.0 0.0 0.01 0.0
metaworld-box-close 25 0.58 0.58 0.76 0.0 0.0 0.0 0.0 0.01
metaworld-box-close 50 0.69 0.69 0.86 0.0 0.0 0.0 0.0 0.0
metaworld-box-close 75 0.68 0.82 0.98 0.0 0.0 0.0 0.0 0.0
metaworld-box-close 100 0.81 0.86 0.97 0.0 0.0 0.0 0.0 0.0
metaworld-door-lock 25 0.58 0.72 0.8 0.13 0.12 0.24 0.31 0.0
metaworld-door-lock 50 0.55 0.78 0.83 0.13 0.15 0.24 0.25 0.03
metaworld-door-lock 75 0.63 0.83 0.83 0.13 0.17 0.24 0.27 0.01
metaworld-door-lock 100 0.64 0.83 0.85 0.13 0.17 0.24 0.28 0.03

metaworld-door-unlock 25 0.53 0.58 0.67 0.01 0.03 0.06 0.07 0.0
metaworld-door-unlock 50 0.55 0.75 0.82 0.01 0.03 0.06 0.07 0.01
metaworld-door-unlock 75 0.78 0.87 0.91 0.01 0.02 0.06 0.05 0.0
metaworld-door-unlock 100 0.86 0.89 0.93 0.01 0.03 0.06 0.08 0.03
metaworld-hand-insert 25 0.27 0.6 0.55 0.01 0.07 0.01 0.05 0.0
metaworld-hand-insert 50 0.54 0.66 0.68 0.01 0.04 0.01 0.06 0.0
metaworld-hand-insert 75 0.56 0.76 0.79 0.01 0.04 0.01 0.06 0.0
metaworld-hand-insert 100 0.69 0.76 0.83 0.01 0.02 0.01 0.03 0.01

atari-pong 7 (11599) 0.08 0.08 0.2 0.0 0.0 0.0 0.0 0.0
atari-pong 10 (16533) 0.18 0.2 0.23 0.0 0.0 0.0 0.0 0.0
atari-pong 13 (21468) 0.18 0.22 0.22 0.0 0.0 0.0 0.0 0.0
atari-pong 16 (26400) 0.18 0.22 0.25 0.0 0.0 0.0 0.0 0.0
atari-alien 3 (12759) 0.04 0.08 0.09 0.0 0.0 0.0 0.0 0.0
atari-alien 4 (17353) 0.05 0.08 0.08 0.0 0.0 0.0 0.0 0.0
atari-alien 5 (22684) 0.05 0.08 0.1 0.0 0.0 0.0 0.0 0.0
atari-alien 6 (27692) 0.05 0.09 0.1 0.0 0.0 0.0 0.0 0.0

atari-mspacman 4 (11902) 0.68 0.84 0.83 0.0 0.0 0.01 0.02 0.0
atari-mspacman 5 (14520) 0.68 0.83 0.83 0.0 0.01 0.01 0.02 0.0
atari-mspacman 9 (22490) 0.82 0.86 0.9 0.0 0.02 0.01 0.01 0.0
atari-mspacman 10 (25160) 0.82 0.86 0.9 0.0 0.01 0.01 0.02 0.0
Aggregate Mean 0.473 0.572 0.627 0.019 0.029 0.04 0.052 0.004

Table 1: Values in Figure 4. Each value is an average across 100 rollouts of different seeds in
Metaworld and 15 rollouts of different seeds in Atari.

Env Num R&P REGENT REGENT JAT/Gato JAT/Gato JAT/Gato JAT/Gato Train
demos Finetuned Finetuned (All Data) (All Data) From

Finetuned Scratch
mujoco-halfcheetah 25 0.08 0.01 0.19 0.0 0.0 0.0 0.0 0.04
mujoco-halfcheetah 50 0.08 0.01 0.26 0.0 0.01 0.0 0.0 0.04
mujoco-halfcheetah 75 0.09 0.0 0.31 0.0 0.03 0.0 0.0 0.04
mujoco-halfcheetah 100 0.1 0.0 0.34 0.0 0.03 0.0 0.01 0.04

mujoco-hopper 25 0.21 0.01 0.01 0.0 0.0 0.01 0.03 0.04
mujoco-hopper 50 0.26 0.01 0.04 0.0 0.0 0.01 0.03 0.02
mujoco-hopper 75 0.24 0.01 0.1 0.0 0.0 0.01 0.05 0.02
mujoco-hopper 100 0.25 0.01 0.12 0.0 0.0 0.01 0.05 0.01

Aggregate Mean 0.164 0.008 0.171 0.0 0.009 0.005 0.021 0.031

Table 2: Values in Figure 9. Each value is an average across 100 rollouts of different seeds.

21

Under review as a conference paper at ICLR 2025

Env Num demos REGENT JAT/Gato
metaworld-assembly 100 0.83 0.89
metaworld-basketball 100 0.68 0.03

metaworld-button-press-topdown-wall 100 0.62 0.43
metaworld-button-press-topdown 100 0.62 0.43

metaworld-button-press-wall 100 0.94 0.61
metaworld-button-press 100 0.62 0.43
metaworld-coffee-button 100 0.84 0.33
metaworld-coffee-pull 100 0.62 0.01
metaworld-coffee-push 100 0.18 0.04

metaworld-dial-turn 100 0.83 0.33
metaworld-disassemble 100 2.24 0.0
metaworld-door-close 100 1.0 0.46
metaworld-door-open 100 0.98 0.46

metaworld-drawer-close 100 1.0 0.89
metaworld-drawer-open 100 0.96 0.91
metaworld-faucet-close 100 0.53 0.16
metaworld-faucet-open 100 0.99 0.68

metaworld-hammer 100 0.95 0.52
metaworld-handle-press-side 100 0.99 0.83

metaworld-handle-press 100 0.99 0.83
metaworld-handle-pull-side 100 0.48 0.0

metaworld-handle-pull 100 0.48 0.0
metaworld-lever-pull 100 0.19 0.03

metaworld-peg-insert-side 100 0.7 0.15
metaworld-peg-unplug-side 100 0.31 0.02
metaworld-pick-out-of-hole 100 0.01 0.0
metaworld-pick-place-wall 100 0.99 0.01

metaworld-pick-place 100 0.99 0.01
metaworld-plate-slide-back-side 100 1.0 0.02

metaworld-plate-slide-back 100 1.0 0.02
metaworld-plate-slide-side 100 0.99 0.19

metaworld-plate-slide 100 1.0 0.02
metaworld-push-back 100 0.84 0.01
metaworld-push-wall 100 0.81 0.01

metaworld-push 100 0.84 0.01
metaworld-reach-wall 100 0.99 1.03

metaworld-reach 100 0.99 1.03
metaworld-shelf-place 100 0.96 0.0

metaworld-soccer 100 0.61 0.21
metaworld-stick-pull 100 0.88 0.04
metaworld-stick-push 100 0.75 0.02
metaworld-sweep-into 100 0.91 0.16

metaworld-sweep 100 0.91 0.16
metaworld-window-close 100 0.9 0.1
metaworld-window-open 100 0.97 0.14

Aggregate Mean 0.82 0.281

Table 3: Values in Figure 11. Each value is an average across 100 rollouts of different seeds.

Env Num demos REGENT JAT/Gato
mujoco-ant 100 0.17 0.12

mujoco-doublependulum 100 0.02 0.01
mujoco-humanoid 100 0.02 0.02
mujoco-pendulum 100 0.06 0.03

mujoco-pusher 100 0.9 0.95
mujoco-reacher 100 0.9 0.91
mujoco-standup 100 0.26 0.2

mujoco-swimmer 100 0.82 0.97
mujoco-walker 100 0.05 0.16

Aggregate Mean 0.356 0.374

Table 4: Values in Figure 12. Each value is an average across 100 rollouts of different seeds.

22

Under review as a conference paper at ICLR 2025

Env Num demos REGENT JAT/Gato
atari-amidar 5 0.96 0.02
atari-assault 5 0.02 0.02
atari-asterix 5 0.13 0.03

atari-asteroids 5 0.07 0.0
atari-atlantis 5 0.18 0.03

atari-bankheist 5 0.46 0.18
atari-battlezone 5 0.47 0.01
atari-beamrider 5 0.04 0.0

atari-berzerk 5 0.14 0.0
atari-bowling 5 1.0 1.0
atari-boxing 5 0.22 0.38

atari-breakout 5 0.15 0.0
atari-centipede 5 0.35 0.07

atari-choppercommand 5 0.02 0.0
atari-crazyclimber 5 0.19 0.14

atari-defender 5 0.1 0.01
atari-demonattack 5 0.0 0.0
atari-doubledunk 5 0.54 0.28

atari-enduro 5 0.0 0.0
atari-fishingderby 5 0.62 0.1

atari-freeway 5 0.82 0.6
atari-frostbite 5 0.44 0.01
atari-gopher 5 0.66 0.01
atari-gravitar 5 0.03 0.06

atari-hero 5 1.0 0.17
atari-icehockey 5 0.21 0.1
atari-jamesbond 5 0.01 0.0
atari-kangaroo 5 0.0 0.0

atari-krull 5 0.5 0.41
atari-kungfumaster 5 0.0 0.02

atari-montezumarevenge 5 0.0 0.0
atari-namethisgame 5 0.61 0.03

atari-phoenix 5 0.07 0.0
atari-pitfall 5 0.97 1.01

atari-privateeye 5 0.0 0.79
atari-qbert 5 0.57 0.01

atari-riverraid 5 0.19 0.04
atari-roadrunner 5 0.03 0.02
atari-robotank 5 0.23 0.04
atari-seaquest 5 0.48 0.11
atari-skiing 5 0.0 0.0
atari-solaris 5 0.0 0.0

atari-surround 5 0.36 0.03
atari-tennis 5 0.15 0.01

atari-timepilot 5 0.04 0.0
atari-tutankham 5 0.16 0.02
atari-upndown 5 0.13 0.01
atari-venture 5 1.0 1.0

atari-videopinball 5 0.0 0.01
atari-wizardofwor 5 0.76 0.01
atari-yarsrevenge 5 0.01 0.01

atari-zaxxon 5 0.14 0.01
Aggregate Mean 0.293 0.131

Table 5: Values in Figure 13. Each value is an average across 15 rollouts of different seeds.

23

Under review as a conference paper at ICLR 2025

Env Num demos REGENT JAT/Gato
babyai-action-obj-door 20 0.39 0.57

babyai-blocked-unlock-pickup 20 0.45 0.97
babyai-boss-level-no-unlock 20 0.49 0.1

babyai-boss-level 20 0.49 0.1
babyai-find-obj-s5 20 0.61 0.92
babyai-go-to-door 20 0.49 0.89

babyai-go-to-imp-unlock 20 0.21 0.03
babyai-go-to-local 20 0.66 0.46

babyai-go-to-obj-door 20 0.14 0.76
babyai-go-to-obj 20 0.14 0.76

babyai-go-to-red-ball-grey 20 0.68 0.76
babyai-go-to-red-ball-no-dists 20 0.95 0.98

babyai-go-to-red-ball 20 0.68 0.76
babyai-go-to-red-blue-ball 20 0.71 0.71

babyai-go-to-seq 20 0.46 0.46
babyai-go-to 20 0.49 0.89

babyai-key-corridor 20 0.07 0.47
babyai-mini-boss-level 20 0.61 0.28

babyai-move-two-across-s8n9 20 0.0 0.0
babyai-one-room-s8 20 0.96 0.97
babyai-open-door 20 0.58 0.92

babyai-open-doors-order-n4 20 0.54 0.33
babyai-open-red-door 20 0.99 0.99

babyai-open-two-doors 20 0.37 0.37
babyai-open 20 0.58 0.92

babyai-pickup-above 20 0.44 0.86
babyai-pickup-dist 20 0.66 0.4
babyai-pickup-loc 20 0.42 0.38

babyai-pickup 20 0.44 0.86
babyai-put-next-local 20 0.12 0.0

babyai-put-next 20 0.12 0.0
babyai-synth-loc 20 0.5 0.3
babyai-synth-seq 20 0.59 0.07

babyai-synth 20 0.5 0.3
babyai-unblock-pickup 20 0.25 0.23

babyai-unlock-local 20 0.93 0.99
babyai-unlock-pickup 20 0.81 0.96

babyai-unlock-to-unlock 20 0.35 0.79
babyai-unlock 20 0.93 0.99

Aggregate Mean 0.508 0.577

Table 6: Values in Figure 14. Each value is an average across 100 rollouts of different seeds.

24

Under review as a conference paper at ICLR 2025

D ADDITIONAL PROCGEN RESULTS

Discussion about MTT’s performance: We note that it is likely that MTT performance is close
to random on a couple of environments only because the authors are forced to constrain MTT
rollouts to 200 steps, stopping short of the true horizon of these environments, simply because of the
quadratically increasing complexity of attention with increase in context size. MTT also likely does
not report results beyond 4 demonstrations in the context for this reason. Yet, this is not an issue for
R&P or REGENT which can scale to any number of demonstrations to retrieve from since it only uses
the 19 closest states in the context.

Figure 15: Normalized returns in unseen levels in all 12 ProcGen training environments against the
number of demonstration trajectories the agent can retrieve from. Each value is an average across 10
levels with 5 rollouts each with psticky = 0.1. See Table 8 for all values.

25

Under review as a conference paper at ICLR 2025

Env sticky prob num demos (epoch, end batch) REGENT R&P MTT [33]

ninja p=0.2 n=2 (0, 11612) (7.2, 1.17) (5.67, 1.1)
n=4 (0, 11612) (7.4, 2.06) (5.5, 1.25) (4.1, 0.35)
n=8 (0, 11612) (7.4, 1.02) (6.4, 1.5)
n=12 (0, 11612) (7.8, 0.4) (6.33, 1.2)
n=16 (0, 11612) (8.0, 0.63) (7.4, 1.11)
n=20 (0, 11612) (8.2, 0.75) (7.6, 1.2)

climber p=0.2 n=2 (0, 11612) (4.98, 0.85) (3.17, 0.93)
n=4 (0, 11612) (6.52, 2.06) (3.95, 1.42) (1.85, 0.41)
n=8 (0, 11612) (6.38, 1.52) (3.12, 1.87)
n=12 (0, 11612) (6.92, 1.19) (5.64, 2.37)
n=16 (0, 11612) (6.66, 1.18) (3.77, 2.0)
n=20 (0, 11612) (7.04, 1.65) (5.41, 1.78)

plunder p=0.2 n=2 (0, 11612) (10.98, 2.23) (8.46, 1.26)
n=4 (0, 11612) (11.9, 0.77) (8.3, 1.88) (2.5, 0.2)
n=8 (0, 11612) (12.14, 1.22) (8.2, 1.72)
n=12 (0, 11612) (13.8, 1.59) (9.36, 2.16)
n=16 (0, 11612) (14.04, 2.63) (9.84, 2.11)
n=20 (0, 11612) (13.78, 1.81) (10.8, 1.87)

jumper p=0.2 n=2 (0, 11612) (4.6, 0.8) (3.75, 1.45)
n=4 (0, 11612) (5.8, 1.47) (4.0, 1.28) (4.65, 0.28)
n=8 (0, 11612) (6.0, 1.26) (4.25, 1.69)
n=12 (0, 11612) (6.4, 0.49) (5.25, 0.92)
n=16 (0, 11612) (6.8, 0.75) (6.0, 1.02)
n=20 (0, 11612) (6.8, 1.6) (5.5, 1.54)

Table 7: Values in Figure 5 before normalization. The tuples represent (mean, std) obtained across 10
levels with 5 rollouts each.

26

Under review as a conference paper at ICLR 2025

Env sticky prob num demos (epoch, end batch) REGENT R&P REGENT (seen levels)

bigfish p=0.1 n=2 (0, 11612) (11.32, 2.2) (6.75, 3.92)
n=4 (0, 11612) (14.32, 2.55) (11.85, 3.09)
n=8 (0, 11612) (18.82, 3.45) (14.7, 4.08)
n=12 (0, 11612) (20.66, 3.33) (14.02, 4.4)
n=16 (0, 11612) (21.32, 5.07) (14.43, 3.24)
n=20 (0, 11612) (22.74, 4.23) (13.28, 3.28) (25.7, 3.03)

bossfight p=0.1 n=2 (0, 11612) (3.76, 0.77) (1.45, 1.13)
n=4 (0, 11612) (5.52, 0.56) (3.38, 1.4)
n=8 (0, 11612) (5.24, 1.47) (3.67, 1.1)
n=12 (0, 11612) (5.12, 0.74) (3.17, 1.4)
n=16 (0, 11612) (4.32, 1.98) (3.51, 1.13)
n=20 (0, 11612) (4.44, 1.23) (4.1, 1.38) (5.6, 1.12)

caveflyer p=0.1 n=2 (0, 11612) (7.44, 1.13) (2.74, 0.92)
n=4 (0, 11612) (7.34, 0.71) (2.98, 1.13)
n=8 (0, 11612) (7.0, 0.89) (3.29, 0.69)
n=12 (0, 11612) (6.96, 0.4) (3.27, 1.27)
n=16 (0, 11612) (6.72, 0.83) (3.31, 1.1)
n=20 (0, 11612) (7.08, 0.81) (4.04, 0.85) (7.68, 0.48)

chaser p=0.1 n=2 (0, 11612) (1.15, 0.2) (1.01, 0.19)
n=4 (0, 11612) (1.51, 0.43) (1.51, 0.45)
n=8 (0, 11612) (1.46, 0.16) (1.47, 0.34)
n=12 (0, 11612) (1.61, 0.11) (1.77, 0.74)
n=16 (0, 11612) (1.47, 0.08) (1.53, 0.47)
n=20 (0, 11612) (1.79, 0.47) (1.73, 0.47) (2.4, 0.47)

coinrun p=0.1 n=2 (0, 11612) (7.8, 1.6) (6.2, 1.17)
n=4 (0, 11612) (7.2, 0.75) (5.9, 1.37)
n=8 (0, 11612) (7.0, 0.89) (6.4, 1.28)
n=12 (0, 11612) (6.8, 0.98) (6.2, 1.08)
n=16 (0, 11612) (7.2, 1.17) (6.6, 1.28)
n=20 (0, 11612) (8.0, 1.1) (5.8, 0.87) (8.2, 0.4)

dodgeball p=0.1 n=2 (0, 11612) (3.36, 1.04) (1.93, 0.93)
n=4 (0, 11612) (3.44, 0.32) (1.8, 0.86)
n=8 (0, 11612) (4.04, 1.09) (2.17, 0.54)
n=12 (0, 11612) (3.72, 0.69) (2.07, 0.72)
n=16 (0, 11612) (3.64, 0.82) (2.33, 0.67)
n=20 (0, 11612) (3.56, 0.74) (2.4, 0.6) (7.12, 1.12)

fruitbot p=0.1 n=2 (0, 11612) (3.18, 0.7) (0.98, 1.48)
n=4 (0, 11612) (7.48, 2.44) (1.6, 3.05)
n=8 (0, 11612) (11.02, 1.94) (3.67, 3.37)
n=12 (0, 11612) (13.02, 1.39) (4.38, 4.59)
n=16 (0, 11612) (15.04, 2.26) (7.45, 5.22)
n=20 (0, 11612) (15.62, 1.76) (4.67, 4.56) (16.36, 3.49)

heist p=0.1 n=2 (0, 11612) (4.6, 0.8) (3.8, 1.72)
n=4 (0, 11612) (5.0, 2.83) (3.7, 1.9)
n=8 (0, 11612) (5.2, 1.72) (4.9, 1.3)
n=12 (0, 11612) (5.4, 1.2) (3.4, 1.11)
n=16 (0, 11612) (6.0, 0.63) (5.1, 1.3)
n=20 (0, 11612) (5.4, 1.36) (4.6, 1.2) (7.2, 1.17)

leaper p=0.1 n=2 (0, 11612) (6.4, 1.2) (3.33, 1.73)
n=4 (0, 11612) (7.4, 1.62) (5.83, 1.35)
n=8 (0, 11612) (7.6, 1.36) (7.17, 1.0)
n=12 (0, 11612) (8.2, 0.75) (7.5, 1.43)
n=16 (0, 11612) (9.0, 1.1) (7.83, 1.0)
n=20 (0, 11612) (9.2, 0.75) (6.17, 0.78) (9.2, 0.75)

maze p=0.1 n=2 (0, 11612) (5.6, 0.49) (5.0, 1.41)
n=4 (0, 11612) (4.8, 1.17) (3.1, 0.94)
n=8 (0, 11612) (5.8, 1.17) (4.9, 0.83)
n=12 (0, 11612) (6.0, 0.63) (4.6, 0.8)
n=16 (0, 11612) (6.0, 1.67) (4.5, 1.02)
n=20 (0, 11612) (6.0, 0.89) (4.5, 1.12) (8.4, 0.8)

miner p=0.1 n=2 (0, 11612) (2.88, 1.22) (2.14, 0.72)
n=4 (0, 11612) (4.72, 0.82) (3.12, 0.54)
n=8 (0, 11612) (3.68, 1.53) (2.96, 1.46)
n=12 (0, 11612) (4.54, 1.54) (3.09, 1.05)
n=16 (0, 11612) (4.38, 0.93) (3.45, 1.04)
n=20 (0, 11612) (3.76, 0.38) (3.12, 1.11) (6.58, 1.56)

starpilot p=0.1 n=2 (0, 11612) (12.52, 1.16) (10.28, 2.07)
n=4 (0, 11612) (11.94, 2.27) (11.33, 2.16)
n=8 (0, 11612) (12.82, 2.75) (10.93, 2.19)
n=12 (0, 11612) (14.9, 4.75) (10.8, 1.03)
n=16 (0, 11612) (15.34, 2.32) (10.49, 1.85)
n=20 (0, 11612) (11.8, 1.82) (10.08, 2.25) (16.1, 3.8)

Table 8: Values in Figures 6 and 15 before normalization. The tuples represent (mean, std) obtained
across 10 levels with 5 rollouts each.

27

	Introduction
	Related Work
	Problem Formulation
	REGENT: A Retrieval-Augmented Generalist Agent
	Retrieve and Play (R&P)
	Retrieval-Augmented Generalist Agent (REGENT)

	Sub-Optimality Bound for REGENT Policies
	Experimental Evaluation
	Conclusions and Future Work
	Additional Details on REGENT: A Retrieval Augmented Generalist Agent
	Proof of Theorem 5.2
	Additional JAT/Gato Results
	Additional ProcGen Results

